Vibrato Monte Carlo sensitivities
نویسنده
چکیده
We show how the benefits of the pathwise sensitivity approach to computing Monte Carlo Greeks can be extended to discontinuous payoff functions through a combination of the pathwise approach and the Likelihood Ratio Method. With a variance reduction modification, this results in an estimator which for timestep h has a variance which is O(h−1/2) for discontinuous payoffs and O(1) for continuous payoffs. Numerical results confirm the variance is much lower than the O(h−1) variance of the Likelihood Ratio Method, and the approach is also compatible with the use of adjoints to obtain multiple first order sensitivities at a fixed cost.
منابع مشابه
Vibrato and automatic differentiation for high order derivatives and sensitivities of financial options
This paper deals with the computation of second or higher order greeks of financial securities. It combines two methods, Vibrato and automatic differentiation and compares with other methods. We show that this combined technique is faster than standard finite difference, more stable than automatic differentiation of second order derivatives and more general than Malliavin Calculus. We present a...
متن کاملDerivation and validation of a sensitivity formula for knife-edge slit gamma camera: A theoretical and Monte Carlo simulation study
Introduction: Gamma cameras are proposed for online range verification and treatment monitoring in proton therapy. An Analytical formula was derived and validated for sensitivity of a slit collimator based on the photon fluence concept. Methods: Fluence formulation was generalized for photons distribution function and solved for high-energy point sources. The...
متن کاملMalliavin Calculus for Levy Markets and New Sensitivities
Abstract. We present a method to apply the Malliavin calculus to calculate sensitivities for exponential Levy models built from the Variance Gamma and Normal Inverse Gaussian processes. We also present new sensitivities for these processes. The calculation of the sensitivities is based on a finite dimensional Malliavin calculus and we compare the results with finite difference calculations. Thi...
متن کاملSensitivities for Bermudan Options by Regression Methods
In this article we propose several pathwise and finite difference based methods for calculating sensitivities of Bermudan options using regression methods and Monte Carlo simulation. These methods rely on conditional probabilistic representations which allow, in combination with a regression approach, for efficient simultaneous computation of sensitivities at many initial positions. Assuming th...
متن کامل